3,732 research outputs found

    Geometric Approximations of Some Aloha-like Stability Regions

    Full text link
    Most bounds on the stability region of Aloha give necessary and sufficient conditions for the stability of an arrival rate vector under a specific contention probability (control) vector. But such results do not yield easy-to-check bounds on the overall Aloha stability region because they potentially require checking membership in an uncountably infinite number of sets parameterized by each possible control vector. In this paper we consider an important specific inner bound on Aloha that has this property of difficulty to check membership in the set. We provide ellipsoids (for which membership is easy-to-check) that we conjecture are inner and outer bounds on this set. We also study the set of controls that stabilize a fixed arrival rate vector; this set is shown to be a convex set.Comment: Presented at IEEE ISIT 2010 (Austin, TX

    Rotational Behaviors and Magnetic Field Evolution of Radio Pulsars

    Full text link
    The observed long-term spin-down evolution of isolated radio pulsars cannot be explained by the standard magnetic dipole radiation with a constant braking torque. However how and why the torque varies still remains controversial, which is an outstanding problem in our understanding of neutron stars. We have constructed a phenomenological model of the evolution of surface magnetic fields of pulsars, which contains a long-term decay modulated by short-term oscillations; a pulsar's spin is thus modified by its magnetic field evolution. The predictions of this model agree with the precisely measured spin evolutions of several individual pulsars; the derived parameters suggest that the Hall drift and Hall waves in the NS crusts are probably responsible for the long-term change and short-term quasi-periodical oscillations, respectively. Many statistical properties of the timing noise of pulsars can be well re-produced with this model, including correlations and the distributions of the observed braking indices of the pulsars, which span over a range of more than 100 millions. We have also presented a phenomenological model for the recovery processes of classical and slow glitches, which can successfully model the observed slow and classical glitch events without biases.Comment: 6 pages, 9 figures, submitted to conference proceedings of SMFNS2013 (Strong electromagnetic field and neutron stars 2013

    Mean Square Capacity of Power Constrained Fading Channels with Causal Encoders and Decoders

    Full text link
    This paper is concerned with the mean square stabilization problem of discrete-time LTI systems over a power constrained fading channel. Different from existing research works, the channel considered in this paper suffers from both fading and additive noises. We allow any form of causal channel encoders/decoders, unlike linear encoders/decoders commonly studied in the literature. Sufficient conditions and necessary conditions for the mean square stabilizability are given in terms of channel parameters such as transmission power and fading and additive noise statistics in relation to the unstable eigenvalues of the open-loop system matrix. The corresponding mean square capacity of the power constrained fading channel under causal encoders/decoders is given. It is proved that this mean square capacity is smaller than the corresponding Shannon channel capacity. In the end, numerical examples are presented, which demonstrate that the causal encoders/decoders render less restrictive stabilizability conditions than those under linear encoders/decoders studied in the existing works.Comment: Accepted by the 54th IEEE Conference on Decision and Contro
    • …
    corecore